I

Equations (27)-(34) show that the changes in
thermal conductivity and ultrasonic attenuation are
simple functions of the parameter
u=2VT(Aa/kvp)?k, 1 and are, therefore, strongly
mean-free-path dependent. In Figs. 1-3, we plot
(ax/k,)?, (Aa®/a,)?, and (Aa®/a,)?, respectively,
as functions of u. As is easily seen from the fig-

ures, the relative change in the square of the trans-

port coefficients for fixed I can be considered as
proportional to A%, that is, H, —B, over a narrow
field range close to H,;. Both of these effects are
consistent with experiment. Further, we note that
the theory correctly predicts the experimentally
observed anisotropy in the thermal conductivity
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near H,,.

Finally, we should point out that we only expect
the theory to be valid for p<1: For values of
i >1, that is, for fields H< H,, and/or purer sam-
ples, it will be necessary to determine the single-
particle propagator used in this theory to a higher
degree of accuracy.
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We recalculate the flux-flow resistivity and the Ettingshausen coefficient of clean type-II
superconductors in the high-field region. Use is made of a Green's function due to Brandt,
Pesch, and Tewordt, which enables accurate calculation of the transport properties in the
vicinity of the upper critical field. Both the flux-flow resistivity and the Ettingshausen effect
can be compared with the previous calculation in the 1imit of the small order parameter,
although the present expression for the flux-flow resistivity results in a slope at H=H,, larger
by a factor of 2. We also find a strong mean-free-path dependence of these coefficients in

lower fields.
I. INTRODUCTION

In recent years there has been a great deal of
work, both theoretical and experimental, on the
transport properties of type-II superconductors!+?
in the flux-flow regime. The dynamical properties
(e.g., flux-flow resistivity and Ettingshausen ef-
fect) in the flux-flow regime are of particular in-
terest, since they provide invaluable information

on the dynamical behavior of the superconducting
order parameter (i.e., the way the order param-
eter in the vortex state moves in response to an
electric field or to a temperature gradient).

This phenomenon can be treated from a micro-
scopic point of view, if we limit ourselves to the
vicinity of the upper critical field H, where the
order parameter A(T, ¢) is small. In fact, making
use of a perturbation expansion, where we take
the order parameter as a small parameter, vari-
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ous transport coefficients have been calculated for
both dirty and clean type-II superconductors. ¥’
In dirty type-II superconductors (which are typical
gapless superconductors), the above approach
should work well, and the theoretical calculation
can explain, for the most part, all of the transport
properties!™? (with the possible exception of the
Hall current) so far observed experimentally. On
the other hand, in clean type-II superconductors,
we are not sure beforehand whether or not this
type of perturbation approach will result in reliable
predictions.® Previous calculations’ along these
lines by one of us (K. M.) appear to account for at
best only the qualitive features of the transport
properties!? (e.g., flux-flow resistivity and Et-
tingshausen effect) of pure Nb samples. In partic-
ular, the predicted change in the resistivity in the
vortex state appears to be roughly one order of
magnitude smaller than that observed.®!! Further-
more, these transport coefficients display a strong
mean-free-path dependence even in the pure limit!
(i.e., 1/& > 1, where [ is the electric mean free
path and £, is the BCS coherence length), which
cannot be understood in the above theory.

In a previous paper'? (we refer to it hereafter
as I) we were able to circumvent the difficulty as-
sociated with the power expansion in 4, and to cal-
culate various transport properties by making use
of a Green’s function due to Brandt, Pesch, and
Tewordt'®'* (BPT). However, we considered only
those transport coefficients in which the contribu-
tion from the dynamical fluctuation of the order
parameter could be completely neglected.!s In this
paper we calculate those transport coefficients of
a clean type-II superconductor, in which the dynam-
ical fluctuation plays the central role. Making use
of the formalism developed by Caroli and Maki, !*
we can express the transport coefficients in terms
of retarded products, which are taken in the state
without fluctuation. The retarded products are
obtained by making use of the BPT Green’s func-
tion, which should be exact if we are close enough
to the upper critical field. In Sec. II we summarize
the formalism necessary to calculate the flux-flow
conductivity and the Ettingshausen effect. The
relevant retarded products are computed analyt-
ically for small 7T (i.e., 7 =0 °K) in Sec. III. If
we expand the resulting expression in powers of 4,
and compare with the previous calculation, ’ we
find that the Ettingshausen coefficient is the same
in both calculations, while the flux-flow resistivity
is larger, by a factor of 2, than the previous re~
sult. This factor of 2 may be of some importance
in improving the agreement between theory and ex-
periment. The present calculation also shows that
higher-order terms in A become appreciable if 1/§,
is large, and therefore the expansion in powers of
A has only a limited range of validity.

| v

II. FORMULATION

Let us consider a clean type-II superconductor
in the vortex state. A magnetic field H slightly
smaller than H is applied along the 2z axis, and
an electric field E is applied along the x direction.
In terms of linear response theory, which takes
into account the fluctuations of the order param-
eter, !5 the flux-flow conductivity and the Ettings-
hausen coefficient are determined by

Oxx= 1im(—-i—z.——Q’ A iw)) ) (1)
w=0 -1w
a,,:lim(M), )
w=0 -1Ww
where
Qji(-iw)

= (5, 7D i)+ <5, ¥ 1) Dy ([, T 1) (= i)
+(7,¥DD, (¢, T (iw), )
Qi (- iw)
=([TH T (=iw) + (T4 ¥ 1) Dy (¥, T1) (- iw)
+{[(T, ¥ D, (¥, 7] (-iw), (@)

) g
Dy(-iw)= 1- g I{[¥, ¥ (=iw) * (6)

Here, the subscript 1 on D indicates the fluctuation
with azimuthal quantum number n =1, since the
current operator only couples!® the equilibrium
order parameter 4, (which corresponds to a state
with 7 =0) to the fluctuation with n=1. All the re-
tarded products in Eqs. (3)-(5) are to be taken in
the vortex state with fluctuation. !°

Since we are interested here in the transport
properties in a dc electric field, we can expand
the retarded products in powers of w, the external
frequency. Retaining the term of the order w, we
can further simplify Egs. (1) and (2) as

O =0 4ot | (8)

a=a' (7)
where

o*=A4,, , (8)

o' =44, {D,(0) (¥, 7)) ()} , (®)

a' =24 4y {D,(0) ([ ¥, 7)) (O)} . (10)

Here we have made use of the expansions

[, 7D (i) = ([T, 7D (0) —iwA;;+0 (@?), (11)
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T, ¥(=iw) = (¥, T]) (- iw)

=, D) (=iw) = ([, ¥1]) (= iw)

=[5, ¥]) (0) - iwAjy + O (w?) , (12)

5" ¥ (=iw) = ([j*, ¥T]) (- iw) = = iwA py +O (W?)
(13)

where!®
CEEINOENR

In addition, in the above reduction we have neglected
the contribution containing D{!’, the coefficient of
w in D,(-iw). We have

Dl(- l(t)) =D1(0) - iwD{“ ,

since D’

&/1.

In the following we also make use of the previous
results of Caroli and Maki'® (CM) to calculate
D,(0) {[¥, 1) (0), since in the calculation of static
properties, we can make use of the power expan-
sion in A without any difficulty. Therefore, our
task reduced to the calculation of the imaginary
parts of the retarded products A;j, Ajy, and Ajay.
In closing this section we note that there is no con-
tribution to the Ettingshausen coefficient (or to the
thermoelectric power) from {[j* {]), as it vanishes
identically due to the symmetry of the quasiparticle
and hole spectrum.

Furthermore, for the thermoelectric power we
have

(% ¥]) (= iw) = = (i1, ¥1]) (- iw) , (15)

and the contribution from the fluctuation cancels
exactly as in the case of a dirty type-II supercon-
ductor. %56

(14)
is smaller than Ay (or Agny) by a factor

II. FLUX-FLOW CONDUCTIVITY AND
ETTINGSHAUSEN EFFECT

A. Flux-Flow Resistivity

In order to obtain the flux-flow conductivity, as
we have already shown in Sec. II, it is only neces-
sary to calculate Ajy and Aj;. We first consider
the nonfluctuation part of the dc conductivity. The

FIG. 1. Diagrams contributing to c® are shown. Here
g Bdenotes the (BPT) Green’s function [see Eq. (17)].
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calculation proceeds in exactly the same way as
the previous calculation of the thermal conductivity
and the ultrasonic attenuation. '* Aj; can be ex-
pressed in terms of the BPT Green’s function!® as
(see Fig. 1)

Lo O [dR 2 . dw of W
Ajj= o 4, 3oin 9/ ﬁsech (2—T)

X (Ga(ﬁ, w +18) G (B, w - 6)

+A2'[; pW)du F®, u, w +i8) F(D, u, w - id)) , (16)

where
Bz oo Vo (25 b _ A2  _p)du >-1
G (p,zw,,)-(zw,, £ Al: i +E,—u ’ (a7
F(B,u, iw,) =G? (B, iw,) (@, +&,-u)"t , (18)
=u2/(k v p 8108 )2
1 e (19)

plu, @) = = (t,vpsinb)?  *

0w (1+—t—
n=Wn +27|w,,l i

2

§p=2';m"”- ’

ko= (2eH 5) V2,

where 7 is the electronic lifetime, and 6 is the
angle between the dc magnetic field and the momen-
tum P of the electron. Following the procedure
used in I, we can transform Eq. (14) at low temper-
atures (i.e., 7=0 °K) into

1
1
.._3 _ 2
A“‘Z"fo 42 (1= 2) T3 W Gimy)

1+p/(1 =232

“Tou/a-am @0

where

i et
W(z)=7rf Z =1 dt,

w=2Vr 1A%/k,vp and x, is the root of the equation

(21)

xo=1/7+ %71 Wi (xy—-1/7)) . (22)

In Eqs. (20) and (22) we measure energy in units
of k,vpsinf. If we now substitute the approximate
relation

1 1
1= V7 AW (ixg) = 1-2x3 + 280

2A% (o + ZAa‘)

=1_a+2Az(2+a)+4A‘

(23)

into Eq. (20), returning to natural units [i.e., re-
place A by A/k. vp(1~2%)'2], we have
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| v

‘[ 1+(2/a) (8/kvg)? (1 = 27 ]
)fo a+2(2+a)(A/k v (1 -2 T+4(8/kvp) (12"

cofioa(g) [o- (o) () s () 1}

[
where a =4/7. sult with a good approximation. The correspond-
We see that the p-dependent terms in Aj; cancel ing expression in CM yields'®
exactly, and o can be well expressed by a fxrst cor- + - -
Al = T [¢]
rection [of the order (A/€)?] which is independent 8] =D4(0) ([j, ¥T]) (0)0A

of the electronic mean free path. It is worthy of ev; I, -
note that o®* decreases, instead of increasing, in “VZe, ((431{)175 A°) %A, (25)
the vortex state as the magnetic field becomes - . -
smaller. where €,=3k,vp 11=V/i-2¢A, and 4, is the order
Now let us turn to the fluctuation contribution parameter for the vortex state describing the tri-
o', As already stated in Sec. II, we calculate this angular Abrikosov structure. Making use of this
contribution in two steps. First we note that for 6af, the diagram we calculate is given, as shown
D,(0){[3, ¥]) (0) we can make use of the CM re- in Fig. 2, by
N
2eN(0)A . w -
——1_[ j ——sech —T> d (GB ®, w +i6)[ da py (@) F(, 20, w - i6)>
Q
=2eN(0)4, f d f 2% sech” <-2%>I(w, ), (26)
where

1(w,9)=%1rfdgc"(ﬁ,w+z'5)fdapm(a)F(ﬁ, 2a, w -16)

- 1 (z)“zf“’ N -to- 1
= - & du (- io
27(k,vpsind? \ 7 - u(-ui)e _[ d&e w=1/27=iVr A2 W (£ +w +i/27)

1

% [E=w+i/21—iVm 82W(E +w —i/27)] (£ +w +i/27 = u) 27)
and pyo(a), already defined by CM, is given by
(@, D) =2 (D7 @) 6,@ 6G-T-20)) == a2 ) oy & (@03t
piola, §2) = 0(@) ¢,@)6@q-V-20))=-ic( (c, 5tn0) e . (28)
Equation (27) can be transformed into
I, Q)= =t 2\V2ete dETW (E+w+i/21)
¢ (B vpsinb)?\ 7 E-w-i/27—iVT ARW(E +w +3/27)
x 1
E-w+i/2r- VT BW(E+w+i/21) ’ (29)
where we have made use of the relation
(—m) -——-——ﬂ-——=l1rW'(w+i/2T+£) (30)
w+zr+£ u 2 8u w+z'/2'r+£—u ¢

and W(z) is already defined in Eq. (21). Finally, closing the path of integration in the upper half-plane, we
evaluate the integral

Hw,@)= (1) &2 = iW (izy)
’ ”<2> (k,vpsind)? [1 - iV A2W' (iz)] [24 + 2wi — VT AW, (i2y)] ° (31)
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8 for small (nonvanishing) w. Therefore we shall
. ?,? viixlc?ia:\:‘:l?e:ot?:i:uin:ﬁ _ calculate Eq. (31) for small but nonvanishing w
‘ st cal fluctuation of the order ga- (i.e., we assume w/e<«<1). (Note this expansion
' rameter. may also be used to calculate the electric conduc-
. tivity at finite temperature if T/e<«< 1.) For this
purpose we will make use of the asymptotic expan-
sion of W(izo), which is valid if |z4| «<1:
2
where Wlizo) =e*0 - (2/Vm)e,[1+0(23)] . (34)

W, (izg) = Wliz,) - Wl (32) Sul‘::’stiittv.ltinf1 Eq. (34) into Eq. (33), we can solve for
2, by iteration as
[i.e., W;(iz,) is the analytical continuation of °

W(iz,) into the second Riemann sheet (cf. I)] and 2o=1/7 - 2wi
2, is the root of the following equation: V7 A [e"“’z— (@NVT)(1/ 7= 20i +VT A3)] , (35)
20=1/7 = 2iw +VT A2W(iz,) . (33)
and I (w, 22) can be expressed as
In all the above expressions (27), (29)-(31), and e to Ceee
(33), we have measured energy in units of 2,vz8iné. 1(w, Q) =<l’) € _ . 2/‘[’?*41;"9 "

In order to calculate the electric conductivity at 2 (k,vpsing)® 1/7 +2V7 AZe-te
T=0 °K we need only I(0, Q) [i.e., I(w, ) for w=0]. (386)
However, in our subsequent calculation of the Et- Finally, Aj, is obtained as (we return to natural
tingshausen coefficient we need the same function units)

J

-io

R 4eN(0)A e
A V2 f U (& vy sind[1/(k, I sind) + 2Vn A"/ (kv £ Sind)’]

_ VZerN(O)vpa ['dz(1-27)""
- kovp , (=2B7epu (37)

where u has already been defined just after Eq. (21).
The fluctuation contribution to the dc conductivity is then given by

2,2 1 _ 22
°"=4A3»7+D1(0)<[\I',i°]>(o)=4< ¢ er<°)*) [ & (1-27

€k Vp (1-23)"24p
=120 (a/k v Fy (1), (38)
where
dz (1- zz)”z m 2u 1-p ]
Fi(p) f - z) l—u[z-u—_—‘?ym-arctanh<1+“ for p<1
1r 21 p=1 5
“1-ul Z_ == 1. 39)
1 p,[z Wactan<u+1 >] for p (
I
The total dc conductivity in the flux-flow regime is significantly the agreement with experiment.
given by Furthermore o' has a strong mean-free-path de-

_ s ) pendence through u =2v7 (rA%/k vp), although the
0,=0[1-3(8/kcvp)* +12(8/k v g Fy (1)] . (40) slope of the resistivity, (H/R)8R/8H| .y, at H=H,,
The last term in Eq. (40) can be compared with the is independent of [ in the pure limit. In Fig. 3 the

previous calculation by one of us’ (K.M.); it is field dependence of the flux-flow resistivity R(H)
found to be larger by a factor of 2. This differ- =g7! is plotted for severalvalues ofl/¢,. Inthe case
ence originates from the fact that in the previous 2Vrk,l =20 the resistivity increases as a? in-
calculation only a part of the diagram was taken creases for (A/k,vy)?>0.02. We believe that this
into account. unphysical behavior is due to the fact that our ap-

The present calculationindicates that 0 has a some- proximation is still incapable of dealing with the
what stronger dependence on |A|% which improves extremely pure superconductor.
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B. Ettingshausen Effect

In the Ettingshausen effect we have only contribu-

tions from the fluctuation term. As in the case of
J

|

the electric conductivity the problem reduces to
the calculation of the diagram given in Fig. 2 where
j is now replaced by j*, the heat current:

AJN_ZeN_(O)AQf J-—wsechz 27")/d§<65(§,w+i6) da pyla) F(D, 2a,w-i5)>

2
=2eN(0)4, f %%zv,, ] sech? (2—“’7—, ) % I(w, Q)dw

2eN(0)A T\ ) [ (41)
= = TP T
0 VFT{ 3 m A (1-2%)"%+p

h [
where

. --e L (a4)
(w?) [ —w 2sech (2,1,) =3(aT)® . (42)
where

In the derivation of Eq. (41) we made use of vz

I(w, Q) obtained in Eq. (36). Combining this with Fy(u)= u[ z—zymarCtanh< ) ]

the expression D{®’([¥,;]) (0) defined in Eq. (25),
we have
2 2
a=a'=-2(21)'2 &N(0) ____z_lv Wi al® V2
(kch) €

1
1
Xj; dz 1-z5"%+p

-6 QE———? dz———-g—m-—l
= kUF IJ. 1 z)

1.0
2 V7 Lk = 20.0
o9t
R(H) 10.0
R
08
50
orr
0.6 1 1 1
¢ 0.02 0.04 0.06

(A/vek)

FIG. 3. Reduced resistivity R(H)/R in the flux-flow
regime is drawn as functions of (A/vgk,)? for several
values of 2Vrlk, (=1/t,).

for p<1

—2'—1722“ arctan =2 1 1/2]
Hlz pé-1) w+1

for p>1. (45)

This expression is equivalent to the previous
calculation (K. M. ) in the limit u tends to zero.
This follows from the fact that as ([y* ¥]) (0)=0
in the calculation of the Ettingshausen coefficient
we need only the static §A, which is correctly giv-
en by the previous procedure (K. M. ). For a clean
type-II superconductor, the Ettingshausen coeffi-
cient at low temperature can be expressed in terms

0‘5(
o] of
04f

Fp (r)
0.3f

0.2F

O.lF

[

" " " N 1 N L " n s
o] Ol 02 03 04 05 06 07 08 09 10
m

FIG. 4. Universal function F,(1), which appears in
the expression for the delivered entropy per flux line,
is shown as a function of u.
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of a universal function Fy(n) of (u); this explains
qualitatively the magnetic-field dependence ob-
served by Serin and Fiory® in two Nb samples
with different purity.

Making use of @, we can also calculate Sp, the
delivered entropy per unit flux, from Eq. (43).
Sp is defined by

-

g =T 21r’N T
D—eT = k cUr

The quantity

Sof (¥ Gy

is plotted in Fig. 4.

In addition to the Ettingshausen coefficient, we
can also express the Nernst coefficient in terms of
the o given above. However, in order to determine
the Peltier coefficient it is necessary to calculate
the Hall current, which is outside the scope of the
present treatment.

(1 -z )
(46)

) =F,(n)
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IV. CONCLUDING REMARK

Making use of the (BPT) Green’s function, we
recalculate the flux-flow resistivity and the Et-
tingshausen effect for clean type-II superconductors
at low temperatures. The present results seem to
improve greatly agreement with existing experi-
mental data, although more detailed comparisons
are certainly desirable. We also show that the
transport coefficients depend strongly on mean
free path even in the clean limit, although the
slope of various quantities at H =H, is independent
of I. In the present formulation we are still unable
to handle the Hall effect and the related properties
(e.g., the Peltier effect) in the flux-flow regime,
as we did not take into account higher-order terms
in (Ipy) L.
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